

Twin Telescope Tests:

Assessing Station Oriented Systematic Errors

Christopher S. Jacobs,

Jet Propulsion Laboratory, California Institute of Technology
C. Garcia-Miro, S. Horiuchi

Overview:

- VLBI astro-geo goals are now +- 1mm
- XKa celestial frame is dominated by systematic errors, not random errors (precision). Need to identify sources of systematics including antenna structure and instrumentation
- Test if we can achieve +-1mm even over short baselines with highly cancelling errors.
- Use NASA Deep Space Net beam-waveguide antennas At least two per complex, 200 to 300 meter baselines shared clocks, atmospheres, mechanical design.
- Historically we have assumed that these station are on same bedrock and have zero relative velocity to better than +-1mm per decade
- Goldstone tests circa 2005 suggested this was true
- Recent tests at Robledo, Spain challenge the assumption

Ka (32 GHz, 9mm) Combined NASA/ESA Network

- Strengths:
- Uniform spatial density
- less structure than S/X (3.6cm)
- precision $< 100 \mu as$
- needed only 60K observations vs. SX's 12 million!

• Weaknesses:

- Poor near Galactic center due to inter-stellar media scattering
- South weak due to limited time on ESA's Argentina station
- Limited Argentina-California data makes vulnerable to δ zonals
- Limited Argentina-Australia weakens δ from -45 to -60 deg

Ka-band combined NASA/ESA Deep Space Net

ESA Argentina to NASA-California under-observed by order of magnitude!

Baseline percentages

- Argentina is part of 3/5 baselines or 60% but only 13% of obs
- Aust- Argentina 7.5%
- Spain-Argentina 2.2%
- Calif- Argentina 3.7%

This baseline is under-observed by a factor of ~ 12 .

More time on ESA's Argentina station would have a huge, immediate impact!!

Maps credit: Google maps

ESA's Argentina 35-meter antenna adds 3 baselines to DSN's 2 baselines

- Full sky coverage by accessing south polar cap
- near perpendicular mid-latitude baselines: CA to Aust./Argentina

Three VLBI bands compare to better than 200 μ as RMS Gaia DR-1 precision ~ 500 μ as. DR-2 vs. VLBI may reveal zonals

Zonal Errors

- ΔRA vs. Dec:
- \sim 300 μ as in south, 200 μ as in north
- Need 2 baselines to get 2 angles:
 California-Canberra: 24K obs
 California-Argentina: 2K obs
- -> Need more California-Argentina data to overcome this 12 to 1 distortion in sampling geometry. ESA's Malargüe is key.
- Usuda, Japan 54-m XKa (2019) would improve North-South sampling geometry and thus control declination zonal differences.

XKa vs. SX: Zonal errors

NASA Deep Space Network: Robledo, Spain

Year Mo Day	Stations	Nobs	wRMS	
-				
2014 05 28	34-35	317	4.6 psec	<u>Canberra</u>
2014 07 12	34-35	132	6.3	
2014 07 19	34-35	153	2.7	
2014 07 25	34-35	261	11.2	
2016 06 18	34-35	178	4.4	
2016 07 14	34-36	111	3.7	
2016 07 17	34-36	125	11.4	
2016 09 23	34-36	188	3.3	
2015 12 05	54-55	119	5.2	<u>Madrid</u>
2016 01 31	54-55	132	5.4	
2016 05 07	54-55	167	4.1	
2016 07 09	54-55	93	5.2	
2017 01 03	54-55	188	3.3	

Group Delay scatter: DSS34 to DSS35

NASA Deep Space Network: Robledo, Spain

DSS 54, 55:

34-meter, XKa Beam-waveguides "identical" design

Common:

Mechanical design Clock approx. troposphere approx. geophysics

Different:

Last few 100 m of cabling.
Local geophysics?
Local hydrology?
Out of spec instrumentation?

DSS 54 to DSS 55: East Component

DSS 54 to DSS 55 baseline

DSS 54 to DSS 55: North Component

DSS 54 to DSS 55: Vertical Component

DSS 54 to DSS 55 baseline

DSS 54 to DSS 55: Length Component

DSS 54 to DSS 55 baseline

Foundation of DSS 56 under construction

Can the foundation slide horizontally? Are there local micro-faults? Very local ground water changes?

Summary: Twin Telescope Tests

• Goal: to isolate telescope to telescope variations by measuring in an environment where most error sources common mode away.

• Results:

A series of short baseline connected element interferometry passes 8 passes at DSN Canberra 5 passes at DSN Madrid

1 to 4 mm delay scatter

- Canberra baselines are generally stable at near the +-1 mm level
- Madrid baselines show several mm variations from pass to pass.
 Cause of scatter is unknown.
- Work is ongoing. Seasonal effects? Outliers? Need bigger sample.